
research papers

364 doi:10.1107/S2053273314007049 Acta Cryst. (2014). A70, 364–372

Acta Crystallographica Section A

Foundations and
Advances

ISSN 2053-2733

Received 16 October 2013

Accepted 30 March 2014

# 2014 International Union of Crystallography

A multiple-common-lines method to determine the
orientation of snapshot diffraction patterns from
single particles

Liang Zhou, Tian-Yi Zhang, Zhong-Chuan Liu, Peng Liu and Yu-Hui Dong*

Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of

Sciences, 19B Yuquan Road, Shijingshan District, Beijing, People’s Republic of China.

Correspondence e-mail: dongyh@ihep.ac.cn

With the development of X-ray free-electron lasers (XFELs), it is possible to

determine the three-dimensional structures of noncrystalline objects with

coherent X-ray diffraction imaging. In this diffract-and-destroy mode, many

snapshot diffraction patterns are obtained from the identical objects which are

presented one by one in random orientations to the XFEL beam. Determination

of the orientation of an individual object is essential for reconstruction of a

three-dimensional structure. Here a new method, called the multiple-common-

lines method, has been proposed to determine the orientations of high- and low-

signal snapshot diffraction patterns. The mean errors of recovered orientations

(�, �, �) of high- and low-signal patterns are about 0.14, 0.06, 0.12 and 0.77, 0.31,

0.60�, respectively; both sets of errors can meet the requirements of the

reconstruction of a three-dimensional structure.

1. Introduction

Up to now, X-ray crystallography has been the primary

methodology to solve the structures of objects at atomic

resolutions. Most of the known structures in the Protein Data

Bank (PDB) have been obtained by this way. However,

obtaining the high-quality crystals for diffraction is a bottle-

neck in the X-ray crystallography technique. Most of the

viruses, cells and around 40% of protein molecules, especially

the membrane proteins, are difficult to crystallize. To deter-

mine their structures and understand their functions, a new

imaging modality has been developed and that is coherent

X-ray diffraction imaging.

It has been proposed that the two-dimensional coherent

diffraction patterns of noncrystalline objects could be

oversampled and the structures could be recovered by

using an oversampling technique (Sayre et al., 1998). Coherent

X-ray diffraction imaging has been experimentally

demonstrated to determine the two-dimensional structure

of noncrystalline inorganic (Miao et al., 1999) and biological

specimens (Song et al., 2008). In 2000, from computer

simulations, it was found that experiments using very

high X-ray dose rates and ultra-short exposures could provide

useful structural information before radiation damage

destroyed the object (Neutze et al., 2000). With the develop-

ment of X-ray free-electron lasers (XFELs), such pulses have

become a reality and high-quality snapshot diffraction

patterns from noncrystalline objects have been achieved

(Seibert et al., 2011). When the orientations of all patterns are

determined, the three-dimensional structure can be recon-

structed by an oversampling technique (Sayre et al., 1998;

Miao et al., 1999).

Generally, there are two methods that can solve the

orientations, one is a common-line method and the other is an

iterative method. Based on the common-line method,

Shneerson et al. (2008) first proposed a algorithm which can

only determine the orientation of a flat Ewald sphere and

requires the patterns to have a high signal-to-noise ratio

(about 10 photons per pixel); in addition, the mean error of

recovered orientations is large, about 3.5�. Bortel & Tegze

(2011) proposed a common-arc method, which can determine

the orientation of a low-signal pattern with more accuracy by

selecting and averaging the N�1 candidate orientations (N is

the number of patterns), but this method requires relative

orientations of all pattern pairs, which will increase compu-

tational time by an (N/2)-fold amount. Yefanov & Vartanyants

(2013) also proposed a similar algorithm to determine the

orientation of a low-signal pattern. Essentially, all these

algorithms do not overcome a drawback of the common-line

method, which is that the relative orientation between two

patterns is only determined by intensity along the common

arc, and this is a small part of a diffraction pattern. In prin-

ciple, this drawback demands high-signal-to-noise patterns,

which can be obtained by classifying and averaging the weak-

signal patterns (Huldt et al., 2003; Bortel & Faigel, 2007; Bortel

et al., 2009; Tokuhisa et al., 2012) or directly increasing the

intensity of the XFEL pulse and the molecular weight of the

object illuminated (Raines et al., 2010). There are two iterative

methods, one is based on the generative topographic mapping

(GTM) algorithm (Fung et al., 2009; Schwander et al., 2010)
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and the other is based on the expectation maximization

compression (EMC) algorithm (Loh & Elser, 2009; Loh et al.,

2010). In the two methods, the classification and orientation

processes are merged into a single iterative algorithm. It was

shown later that the two methods are fundamentally the same

(Moths & Ourmazd, 2011). The two iterative methods can

work well for weak-signal diffraction patterns, but they are

computationally very expensive in realistic cases. Recently,

another iterative method, based on correlation maximization,

was proposed (Tegze & Bortel, 2012, 2013); this algorithm is a

much simplified version of the EMC algorithm and more

efficient with respect to the GTM and EMC algorithms. Here

we propose a new approach, which can not only solve the

orientations of high-signal patterns but also low-signal

patterns. Our approach mainly consists of two steps. In the first

step, the single-common-line method is used to determine the

initial orientations of each pattern. In the second step, the

multiple-common-lines method is used to refine the orienta-

tions in an iterative way. It has been shown that our method

can also solve the effects of twinning (Kirian et al., 2010) in

femtosecond X-ray protein nanocrystallography (Zhou et al.,

2013). In the following sections, we first describe our method

in detail and then we apply it to high- and low-signal patterns,

respectively; finally we reconstruct the three-dimensional

structure using the high-signal patterns.

2. Determining the orientations using single-common-
line method

For a noncrystalline object with orientation (�,�,�) illumi-

nated by a pulse from an XFEL with a wavelength �, its

snapshot diffraction patterns can be expressed as (Bortel et al.,

2009)

ccdðn1; n2Þ ¼ IðkÞ ¼ �incr2
e FðkÞ
�� ��2�pixðkÞ; ð1Þ

where ccd(n1,n2) is the diffracted photon flux in the detector

pixel (n1,n2), re is the classical electron radius, �inc is the flux

density of the incoming X-ray pulse, �pix is the solid angle of

the detector pixel, F(k) is the structure factor, k is the scat-

tering vector corresponding to the detector pixel (n1,n2) in

orientation (�,�,�), � represents roll, � represents pitch and �
represents yaw (Sidi, 1997). For convenience, we can arbi-

trarily select the orientation of one pattern as the reference

orientation and define it as (0,0,0). Here we define k0 as the

scattering vector corresponding to the same pixel (n1,n2) in

the reference orientation. The relationships between the

reciprocal vectors k and k0 can be expressed as

k0 ¼ ðkx; ky; kzÞ
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where d is the width of a pixel and L is the distance between

the sample and detector. Here we define the Z direction of the

particle coordinate as parallel to the incident direction of the

X-ray beam and Rz(�), Ry(�) and Rx(�) represent the object

rotation around the Z, Y and X axes, respectively, in a coun-

terclockwise direction when looking towards the origin.

The amplitudes of structure factors |F(k)| of the identical

particles which are used to solve the structure can be easily

obtained if the orientations of all snapshot diffraction patterns

are known, according to equations (1) and (2). For conve-

nience, |F�,�,�,n(k)| is used to represent the amplitudes of the

structure factors calculated from the nth pattern in orientation

(�,�,�), |F0,0,0,1(k)| is used to represent the amplitudes of the

structure factors corresponding to first pattern (reference

pattern) in orientation (0,0,0). There is an intersection arc

between |F�,�,�,n(k)| and |F0,0,0,1(k)| in reciprocal space as

shown in Fig. 1; theoretically the values of |F�,�,�,n(k)| and

|F0,0,0,1(k)| are equal along this intersection arc, which is called

a common line, if (�,�,�) is the actual orientation of the nth

pattern. Therefore, the actual orientation of the nth pattern

can be recovered by scanning the angles (�,�,�) and calcu-

lating the average difference among regular grids passed

through by the arc of intersection between |F�,�,�,n(k)| and

|F0,0,0,1(k)|. Rfactor(�,�,�,n) is used to represent the average

difference; it can be expressed as
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Figure 1
Intersection arc of two patterns with different orientations in reciprocal
space.



Rfactorð�;�;�;nÞ ¼
X
hkl

jjF�;�;�;nðh;k;lÞj � jF0;0;0;1ðh;k;lÞjj

jF0;0;0;1ðh;k;lÞj

.X
hkl

1; ð3Þ

where the integer set hkl is the indices of regular grids in

reciprocal space passed through by the arc of intersection. The

values of |F�,�,�, n(h,k, l)| and |F0,0,0,1(h,k, l)| can be easily

obtained by interpolating |F�, �, �, n(k)| and |F0,0,0,1(k)|,

respectively, onto regular grids in reciprocal space using

nearest neighbor interpolation. It should be noted that when

the pattern is interpolated onto regular grids in reciprocal

space, it is possible that one regular grid in reciprocal space,

especially in high resolution, would contain more than one

pixel in a detector and, to a certain extent, this will increase

the signal-to-noise of |F�,�,�, n(h,k, l)|. Moreover, the centro-

symmetry of the diffraction patterns has been included in our

calculation, so there are four intersection arcs (Huldt et al.,

2003). It is worth noting that this feature makes calculating

Rfactor(�,�,�,n) redundant. By scanning a different set of

(�,�,�), if there is a global minimum of Rfactor(�,�,�,n) found

in one orientation (�,�,�), then this orientation is considered

as the orientation of the nth pattern.

The searching ranges of �, � and � are [�180�, 180�], [�90�,

90�] and [�180�, 180�], respectively. It should be noted that an

exhaustive search is computationally very expensive, even

when the search interval is 1�. In this paper, the highest

resolution R is 6.8 Å in all patterns, the diameter O of the

sample is about 345 Å and the required angular resolution is

R/2O radian (Shneerson et al., 2008), about 0.56�; therefore

the smallest search interval should be smaller than 1�. In our

work, it is set to be 0.2�. The detailed steps of the searching

algorithm are listed below.

(1) Performing the searching in angular steps of 5� initially.

Calculating and sorting the Rfactor(�,�,�,n) values in each

orientation (�,�,�), then obtaining N1 candidate orientations

corresponding to the smallest Rfactor(�,�,�,n) values. In this

paper, we performed the searching in whole orientation space

for 20 patterns and found that setting the value of N1 to 150 is

enough to include the correct orientation. Owing to the

computational capabilities in our lab, the search range of �, �
and � is limited to 40 � 40 � 40� near the actual orientation

and N1 is set to 10.

(2) Then performing the searching near the N1 candidate

orientations, in angular steps of 1�. The search ranges are [��
4�, � + 4�], [� � 4�, � + 4�] and [� � 4�, � + 4�], where (�,�,�)

is one of the N1 candidate orientations. Then, N2 new candi-

date orientations, also corresponding to the smallest

Rfactor(�, �,�,n), are obtained after sorting; N2 is usually set to

10–15.

(3) Finally, performing the searching near the N2 new

candidate orientations in angular steps of 0.2�. The search

ranges are [� � 0.8�, � + 0.8�], [� � 0.8�, � + 0.8�] and [� �
0.8�, � + 0.8�], where (�,�,�) is one of the N2 candidate

orientations. The minimum value of Rfactor(�,�,�, n) and its

corresponding orientation are selected as the solution.

The computational time of the single-common-line method

is directly proportional to the number of searches SN1;N2
. When

the search is performed in the whole orientation space, SN1;N2

is about 220 000, where N1 and N2 are 150 and 15, respectively;

it takes about 75 min on a desktop computer with a 3.40 GHz

Inter(R) Core i7-3770 processor. The values of N1 � 150 and

N2� 15 are obtained according to simulated patterns; in a real

case, they may not be accurate and should be adjusted

according to the experimentally recorded patterns. SN1;N2
is

much smaller than the number of searches 360 � 360 � 180

(23 328 000), where (�,�,�) varies sequentially with an

angular step of 1�. Therefore, this searching algorithm can

greatly reduce the computational time.

3. Simulations

We downloaded from the Protein Data Bank a virus capsid

(2tbv; Hopper et al., 1984), which has a large molecular weight,

as the model structure. The molecular weight of the capsid is

about 5000 kDa and the diameter O is about 345 Å. The virus

capsid is embedded into a three-dimensional array of 64 � 64

� 64 voxels after Gaussian broadening; we take this matrix as

our simulated object. The structure factors on each detector

pixel are calculated from the electron densities in the voxels

by Fourier transformation. The snapshot diffraction patterns

can be calculated according to equation (1). We simulate an

XFEL pulse with a wavelength of 5.0 Å and 5 � 1013 photons

per pulse that was focused to a 100 nm spot. The detector

contains 600 � 600 pixels with a width of 100 mm, the sample-

to-detector distance is 27.6 mm (providing a sampling

frequency of about 4 in low resolution). In total, 1000 snapshot

diffraction patterns with different orientations (including the

reference orientation) are simulated. The orientation of each

pattern is generated by uniform random distribution. The

intensities at the central 7 � 7 pixels are removed and Poisson

noises are added to these patterns.
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Figure 2
Average photon counting per detector pixel versus vector k (Å�1) in
reciprocal space; it is about 1.0 in the outer pixels.



The average photon counts per pixel in different resolutions

are shown in Fig. 2; the photon count in the outer pixels is

about 1.0. The values of |F�,�,�,n(k)| and |F0,0,0,1(k)| are inter-

polated into a three-dimensional array of 256 � 256 � 256

voxels and Rfactor(�,�,�,n) is calculated according to equation

(3). As shown in Fig. 3, there is a minimum Rfactor(�,�,�,21)

nearby the actual orientation of the 21st pattern. However,

there is a relatively large error in the �� plane (Fig. 3b). For

our sample of the 21 patterns, a typical comparison of the

recovered orientations with the actual orientations is shown in

Table 1. For a total of 1000 patterns, the mean errors of the

orientations (�,�,�) are about 0.66, 0.14 and 0.51�. According

to the angular resolution function (Shneerson et al., 2008), the

required angular resolution is about 0.56� and so the recov-

ered orientations are basically accurate.

4. Determining the orientations using multiple-
common-lines method

From the above simulation, we find that there are some

diffraction patterns whose azimuth error is relatively large,

such as the 11th, 13th, 14th, 20th and 21st patterns in Table 1.

The main reason for the large errors is that the number of

regular grids passed through by the four intersection arcs

which are used to calculate Rfactor(�,�,�,n) is small, as shown

in Table 1. The number of regular grids passed through by the

intersection arc between two Ewald spheres is related to their

relative orientation. As shown in Fig. 4, when the relative

orientation � belongs to (�180�, �150�] or [�30�, 30�] or

[150�, 180�] and � belongs to [�30�, 30�], where � is random,

the number of regular grids passed through by the intersection

arc is relatively large. Therefore, when the recovered orien-

tation (�,�,�) by the single-common-line method is located in

this special range, it can be considered more accurate, such as

the second, third, fourth, fifth and sixth patterns in Table 1.

In order to improve the accuracy of orientation determi-

nations of other patterns, the diffraction patterns whose

determined orientations are located in this special range and

the original reference pattern can be used together to deter-

mine the orientations of the other patterns. Therefore, we can

divide all the patterns into two subsets for convenience, the

patterns whose orientations were determined by the single-

common-line method as belonging to the special range and the

original reference diffraction pattern are classified as subset 1

(for example, the first to sixth patterns in this paper), the other

diffraction patterns are classified as subset 2 (for example, the
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Figure 3
Contour maps of Rfactor(�, �, �, 21) between the 21st pattern and the
reference diffraction pattern (first pattern) in the vicinity of the
orientation (� = 92.6, � = 62.1, � = 47.6�), which is the actual relative
orientation of the 21st pattern. (a) Contour map along the �� plane,
where the arrow points to the minimum in the orientation (� = 92.6, � =
62.2, � = 47.4�). (b) Contour map along the �� plane where the arrow
points to the minimum in the orientation (� = 93.8, �= 62.1, � = 48.6�). (c)
The contour map along the �� plane where the arrow points to the
minimum in the orientation (� = 92.8, � = 62.2, � = 47.6�).

Figure 4
Number of regular grids passed through by the intersection arcs between
two Ewald spheres along the �� plane, where � is random, the range of �
is �90–90�, the range of � is �180–180�.



seventh to 21st patterns in this paper). The detailed steps of

the multiple-common-lines method are listed below.

(I) Refining the orientations of patterns in subset 1.

(1) The nth pattern whose orientation is to be refined is

interpolated onto regular grids in reciprocal space with a

random orientation (�,�,�), |F�,�,�,n(h,k, l)| is used to repre-

sent this pattern.

(2) The reference patterns, which consist of all others

patterns in subset 1, are also interpolated onto the regular

grids in reciprocal space; a three-dimensional data set

h|F(h, k, l)|i can be assembled from these patterns. Generally

more than one pixel in the new reference patterns contributes

to a given index of regular grid hkl, the pixel values are

averaged to get a more accurate value at hkl. The initial

orientations of the new reference patterns are given by the

single-common-line method.

(3) Scanning the angles (�,�,�) and calculating the average

difference among regular grids passed through by intersection

arcs between the |F�,�,�,n(h,k, l)| and three-dimensional data

set h|F(h,k, l)|i. Because h|F(h,k, l)|i is constituted from more

than one pattern, there will be several intersection arcs

between |F�,�,�,n(h,k, l)| and h|F(h,k, l)|i. Therefore, compared

with the single-common-line method, more diffraction inten-

sity can be used to calculate the average difference, which will

increase the accuracy of calculated average difference and

recovered orientations. The parameter multi-Rfactor(�,�,�,n)

is used to represent the average difference; it can be expressed

as

multi-Rfactorð�; �; �; nÞ ¼

X
hkl

F�;�;�;nðh; k; lÞ
�� ��� Fðh; k; lÞ

�� ��� ��� ��
Fðh; k; lÞ
�� ��� �

.X
hkl

1; ð4Þ

where the integer set hkl is the indices of regular grids passed

through by all the intersection arcs between |F�,�,�,n(h,k, l)|

and h|F(h,k, l)|i. Then, using the searching algorithm in x2, a

new recovered orientation of the nth pattern can be obtained

and it will be used in next iteration.

(4) Repeat steps (1)–(3) for the rest of the patterns in subset

1, except the original reference pattern, until the orientations

of all patterns reach convergence. In this paper, after 2–3

cycles the orientation of each pattern (high signal-to-noise) in

subset 1 no longer changes.

(II) Redetermining the orientations of patterns in subset 2.

Using the searching algorithm in x2, the orientations of

each pattern in subset 2 can be redetermined by scanning the

angles (�,�,�) and calculating average difference multi-

Rfactor(�,�,�,n) among regular grids passed through by all of

the intersection arcs between the pattern and the reference

patterns which consist of all the patterns in subset 1.

(III) Refining the orientations of all patterns.

The orientations of all the patterns can be redetermined by

the same algorithm in step (I), all orientations will no longer

change after a few cycles (2–3 cycles for high-signal-to-noise

patterns in this paper); it means that the orientations of all

patterns are self-consistent.

In step (III), if there are enough patterns, h|F(h,k, l)|i can be

considered as an approximate three-dimensional structure

factor. Using the intersection arcs between |F�,�,�, n(h,k, l)| and

h|F(h,k, l)|i, |F�,�,�,n(h,k, l)| can be located in an appropriate

orientation to fit h|F(h,k, l)|i, then h|F(h,k, l)|i can be updated.

Repeating this for all patterns, after a few cycles, the best

fitting orientations of patterns and the ultimate three-

dimensional structure factor h|F(h,k, l)|i can be obtained.

Since all of the common lines between one pattern and the

other patterns are included in the calculation, the method is

called the multiple-common-lines method. In this method, the
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Table 1
Results for determining the relative orientations of the 20 diffraction patterns using the single-common-line method.

Snapshot
patterns

� (actual/recovered)
(�)

� (actual/ recovered)
(�)

� (actual/recovered)
(�)

Number of regular grids
passed through by the four
intersection lines

Second pattern 18.6/18.6 21.2/21.2 67.6 /67.6 2757
Third pattern 18.4/18.6 �34.8/�34.8 �32.2/�32.4 1775
Fourth pattern �20.8/�20.8 �28.2/�28.4 122.8/122.8 2108
Fifth pattern �31.7/�32.0 �27.7/�27.8 97.1/97.2 1546
Sixth pattern 8.8/8.6 12.4/12.2 �98.3/�98.6 3646
Seventh pattern �116.6/�116.8 �34.4/�34.4 144.4/144.6 1446
Eighth pattern �117.5/�118.2 �46.2/�46.0 �14.3/�13.8 1041
Ninth pattern �153.5/�153.2 �69.3/�69.4 15.9/15.6 1004
Tenth pattern �129.4/�129.6 73.9/73.8 �110.3/�110.4 958
11th pattern 62.2/61.2 62.6/62.2 123.4/122.4 1025
12th pattern 148.3/148.8 43.8/43.6 �113.5/�113.2 1274
13th pattern 18.7/17.8 73.3/72.8 67.7/67.0 922
14th pattern �68.9/�71.2 �82.2/�82.4 �149.8/�147.6 881
15th pattern 24.1/24.2 44.4/44.4 82.5/82.6 1267
16th pattern 140.4/140.4 �54.9/�54.8 �89.3/�89.4 1075
17th pattern 56.9/57.0 9.6/9.6 �99.9/�99.8 1156
18th pattern 157.7/157.6 43.7/43.6 63.3/63.2 1323
19th pattern 59.9/59.6 9.8/9.8 148.5/148.4 1088
20th pattern �106.4/�105.4 �76.6/�76.6 138.7/137.6 942
21st pattern 92.6/93.6 62.1/62.0 47.6/48.4 1077
Mean error 0.47 0.13 0.42



whole diffraction patterns will be exploited to determine the

orientation of each of the patterns.

For the multiple-common-lines method, the most time-

efficient computation is step (III). The time for these

computations is proportional to NcðNp�1ÞSN1;N1
, where Np is

the number of patterns, Nc is the number of cycles, SN1;N2
is the

number of searches in the single-common-line method.

Generally the larger the value of Np, the more cycles (Nc)

there will be. Therefore, in this paper, to save computational

time for the 1000 patterns, we divided them into sets of about

20 patterns each; the orientations of patterns in each set can be

determined by the multiple-common-lines method. When

SN1;N2
is equal to 220 000, for a total of 1000 patterns, it will

take about four days on a 50-node computing cluster (each

node with a 3.40 GHz Inter(R) Core i7-3770 processor).

However, it is still time consuming, and in order to reduce the

amount of computation, a compromise solution can be

established. After determination of the orientations of 20 or

more patterns using the multiple-common-lines method, these

patterns can be taken as the new reference patterns; then the

orientations of the other patterns can be determined by the

new reference patterns using the algorithm step (II). Using

the compromise algorithm, it will take about one day on the

same computing cluster.

In order to compare with the single-common-line method,

we employ the multiple-common-lines method to determine

the orientations of the same patterns, second to 21st in Table 1.

As shown in Fig. 5, there is a more obvious minimum multi-

Rfactor(�,�,�,n) nearby the real orientation of the 21st pattern

and the error in the �� plane is also significantly reduced. As

can be seen in Table 2, the azimuth errors of the 11th, 13th,

14th, 20th and 21st patterns are significantly reduced and for

all 1000 patterns the mean errors of the orientation (�,�,�)

are about 0.14, 0.06 and 0.12�. Thus the accuracy of the

orientation is significantly improved and sufficiently accurate.

Using the compromise algorithm, the mean errors of the

orientation (�,�,�) are about 0.17, 0.05 and 0.09�.

The multiple-common-lines method can also be used to

determine the orientations of low-signal patterns. A total of 81

patterns (including the original reference pattern) are simu-

lated, whose parameters are the same as those in x3 except the

pulse flux (1012 photons per 100 � 100 nm), the photon counts

in outer pixels and outer Shannon–Nyquist pixels are about

0.015 and 0.1, respectively, where the solid angle of a

Shannon–Nyquist pixel is (�/2O)2. These patterns are divided

into two sets which consist of 40 patterns each. Using the

single-common-line method and multiple-common-lines

method (after 8–9 cycles), the orientations of patterns in each

set can be recovered (all orientations no longer change). In the

case of low-signal patterns, the determined orientations of

patterns in subset 1 are not accurate enough by the single-

common-line method. Therefore, after obtaining the initial

orientations by the single-common-line method, step (III) in

the multiple-common-lines method is directly used to recover

the orientations in each set.

The results of the single-common-line method and multiple-

common-lines method are shown in Fig. 6 and Fig. 7, respec-

tively. As shown in Fig. 6, most of the determined orientations

seriously deviate from the actual orientations. For a total of

80 patterns, the mean errors of the orientation (�,�,�) are

about 7.17, 2.86 and 5.06�. Therefore, the single-common-line

method cannot work well for low-signal patterns. As shown in
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Figure 5
Contour maps of multi-Rfactor(�, �, �, 21) between the 21st pattern and
the reference patterns which consist of the other 20 patterns. (a) The
contour map along the �� plane, where the arrow points to the minimum
in the orientation (� = 92.6, � = 62.2, � = 47.4�). (b) The contour map
along the �� plane where the arrow points to the minimum in the
orientation (� = 93.0, � = 62.1, � = 47.8�). (c) The contour map along the
�� plane where the arrow points to the minimum in the orientation (� =
92.8, � = 62.2, � = 47.6�).



Fig. 7, after the multiple-common-lines method, the misor-

ientation angle is significantly reduced and the mean errors of

the orientation (�,�,�) are about 0.77, 0.31 and 0.60�, which

basically meet the requirements of angular resolution. The

accuracy of recovered orientations can be further improved by

containing more patterns in each set.

5. Interpolating diffraction patterns onto the regular
grids in reciprocal space and reconstructing the three-
dimensional structure

After recovering the orientations, these patterns can be easily

interpolated onto the regular grids in reciprocal space by

nearest-neighbor interpolation. The Ewald spheres are

embedded into a three-dimensional array of 128 � 128 � 128

voxels, which means that the oversampling degree is two in

each dimension in reciprocal space.

After interpolating these 1000 patterns onto the grids in

reciprocal space, we can reconstruct the three-dimensional

structure by a phase-retrieval algorithm. Currently, phase-

retrieval algorithms are well developed, such as the error

reduction (ER) algorithm, the hybrid input–output (HIO)

algorithm and the oversampling smoothness algorithm

(Fienup, 1982; Rodriguez et al., 2013). In this paper, the

HIO and the ER algorithms are used to phase the three-

dimensional diffraction data, first 1000 iterations of HIO and

then 500 iterations of ER are performed. The final Rfactor by

HIO–ER is about 0.14. The definition of the Rfactor is the same

as with X-ray crystallography,

Rfactor ¼
P
hkl

jFmðh; k; lÞ � Frðh; k; lÞj
.P

hkl

Fmðh; k; lÞ; ð5Þ

where Fm(h,k, l) is the measured amplitude of Fourier trans-

form, Fr(h,k, l) is the reconstructed amplitude of Fourier

transform. The real structure and the reconstructed structure

by HIO–ER are shown in Figs. 8 and 9.

Comparing Figs. 8 and 9, we find that the reconstructed

structure is basically consistent with the real structure. But
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370 Liang Zhou et al. � A multiple-common-lines method Acta Cryst. (2014). A70, 364–372

Figure 7
Distribution of misorientation angle of low-signal patterns determined by
multiple-common-lines method.

Table 2
Results for determining the orientations of the 20 diffraction patterns using the multiple-common-lines method.

Snapshot
patterns

� (actual/recovered)
(�)

� (actual/recovered)
(�)

� (actual/ recovered)
(�)

Number of grids passed
through by the multiple
intersection lines

Second pattern 18.6/18.4 21.2/21.2 67.6/67.4 26638
Third pattern 18.4/18.4 �34.8/�34.8 �32.2/�32.4 22909
Fourth pattern �20.8/�20.8 �28.2/�28.4 122.8/122.6 25661
Fifth pattern �31.7/�31.8 �27.7/�27.8 97.1/97.0 26606
Sixth pattern 8.8/8.6 12.4/12.2 �98.3/�98.4 24708
Seventh pattern �116.6/�116.8 �34.4/�34.4 144.4/144.6 28413
Eighth pattern �117.5/�117.6 �46.2/�46.2 �14.3/�14.2 29571
Ninth pattern �153.5/�153.8 �69.3/�69.4 15.9/16.2 33500
Tenth pattern �129.4/�129.4 73.9/73.8 �110.3/�110.2 25281
11th pattern 62.2/62.0 62.6/62.6 123.4/123.2 31404
12th pattern 148.3/148.2 43.8/44.0 �113.5/�113.4 27432
13th pattern 18.7/18.4 73.3/73.2 67.7/67.4 33374
14th pattern �68.9/�68.4 �82.2/�82.4 �149.8/�150.4 29257
15th pattern 24.1/24.0 44.4/44.4 82.5/82.4 28398
16th pattern 140.4/140.2 �54.9/�54.8 �89.3/�89.2 23723
17th pattern 56.9/56.8 9.6/9.6 �99.9/�100.0 29188
18th pattern 157.7/157.6 43.7/43.8 63.3/63.4 27171
19th pattern 59.9/59.8 9.8/9.8 148.5/148.4 28530
20th pattern �106.4/�106.8 �76.6/�76.8 138.7/139.0 32040
21st pattern 92.6/92.6 62.1/62.2 47.6/47.6 30826
Mean error 0.16 0.09 0.18

Figure 6
Distribution of misorientation angle of low-signal patterns determined by
single-common-line method.



there is some noise in the reconstructed structure and this

problem is mainly caused by interpolation error, azimuth error

and Poisson noise; it can be solved by increasing the number of

the diffraction patterns.

6. Conclusion

It has been demonstrated that the multiple-common-lines

method can accurately recover the orientations of high- and

low-signal diffraction patterns. In this method, the whole of a

diffraction pattern is exploited to determine the orientation of

each pattern, which can significantly reduce the azimuth error;

this mean accuracy can meet the requirements of angular

resolution. In essence, the multiple-common-lines method

combines the traditional common-line method and an itera-

tive method, and needs no additional classification process,

even for low-signal patterns. The calculation time of multiple-

common-lines method is proportional to the products of the

number of patterns, the number of iterations and the number

of searches in orientation space which are easy to implement

in parallel computing. After the recovery of orientations, the

three-dimensional structure factor h|F(h,k, l)|i can be easily

obtained by interpolating (nearest-neighbor interpolation or

other interpolation methods) these patterns onto regular grids

in reciprocal space, the virus structure can be finally recon-

structed by an iterative phasing algorithm. With the devel-

opment of XFELs, it is hoped that this method can greatly

facilitate the three-dimensional structure determination of

noncrystalline materials and nanocrystals.
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